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a b s t r a c t

Predicting quickly and accurately the strength and location of hazardous materials releases becomes
a critical problem in emergency rescue. A technique that coupled the concentrations observed in the
downwind direction of the source with a dispersion model was presented to back-calculate the strength
and location of the release source by using the pattern search method. The technique was described as
vailable online 21 July 2010
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aussian model
eceptor modeling
ource strength

an optimization problem with an objective function constructed from a sum of squared errors between
the observed concentrations and the calculated concentrations. The utility of the pattern search method
was illustrated by testing the simulation data with practical data. The advantages of the method were
demonstrated by a comparison with a gradient-based algorithm and an intelligent optimization algo-
rithm. The computations indicate that this method can achieve optimal solutions in a relatively shorter

tly m
attern search method
afety distance

time, hence more efficien

. Introduction

Accurate and timely evaluations of the strength and location
f the pollutant sources play an important role in emergency
esponses involving hazardous materials, particularly when toxic
ases are released. Prediction of the strength and location of the
ollutant source is vital when determining suitable emergency
vacuation areas and safety distance.

There is no difficulty to predict the concentration level of pollu-
ants for a known release source by using a dispersion model. When
he source is unknown, however, the source strength and location
as to be identified by the use of the contaminant concentrations
bserved at fixed places. This type of identification, referred to as
he inverse method, deduces the model parameters from the exper-
mental data. It is widely used in the area of natural sciences and
ngineering technology [1,2]. Several previous investigations are
evoted to this issue, which have coupled the observed concentra-
ions with the dispersion model [3–14]. The investigations can be
ivided into two primary categories: one is based on statistical the-
ry, and the other on optimization theory, as is shown in Table 1.
he methods based on statistical theory, such as the Bayesian infer-

nce, are used to obtain the source strength and location [3,4]. With
set of observations and prior assumptions of the model param-

ters, the posterior probability of the parameters is obtained by
he Bayesian inference. Subsequently, the Markov Chain Monte
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eeting the needs of emergency rescue.
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Carlo (MCMC) sampling is employed to obtain the estimation of
the parameters. Since thousands of iterations are needed during
the process of sampling, the methods based on statistical theory
are rather time-consuming. The methods based on optimization
theory minimize the objective function directly by comparing
the observed concentrations and the calculated concentrations. In
order to obtain the optimal solution, several different optimiza-
tion algorithms have been employed. Gilbert and Khajehnajafi [5]
constructed a SAFER System in their patented “Estimation of Toxic
Substance Release”, where the objective function was determined
by root-finding methods such as dichotomy and Newton’s iterative
method. Elbern et al. [6], and Yumimoto and Uno [7] used the four-
dimensional variational assimilation to characterize the source, and
the parameters were dynamically adjusted by introducing the vari-
able of time into the inversion process. The gradient-based method
[8] was also used to optimize the objective function. All the opti-
mization methods mentioned above are summed up as the indirect
method where the calculations of the objective functions and its
derivatives are required, which means that the calculations are
difficult to attain when the objective function is complicated. In
such cases, the direct search methods, such as simulated annealing
[9,10] and genetic algorithm [11–14], are suitable for obtaining the
optimal solution because the gradient information is not required.
While these methods optimize the objective function successively

until a given tolerance is reached, evaluations of objective functions
costs too much time per iteration and therefore become a weakness
in emergency rescues.

In the present research, the source inversion model was
constructed by combining the observed concentrations with a dis-

dx.doi.org/10.1016/j.jhazmat.2010.07.048
http://www.sciencedirect.com/science/journal/03043894
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Table 1
Major source inversion methods.

Theoretical foundations Representation methods Principles Characteristics and
limitations

Representative
achievements

Statistical theory Bayesian inference Assuming that the
sampling results are in
accordance with the priori
distribution of the
parameters, the observed
concentrations are
combined with Bayesian
inference to deduce the
posterior probability of the
parameters. Then the
sampling methods are used
to obtain the estimation of
the parameters

A priori distribution of the
parameters is presupposed

Senocak et al. [3] and Yee
[4]

Optimization theory

Indirect search
methods

Four-dimensional
variational assimilation

An air quality model is
used to inversely locate the
pollutant sources. The
initial value of the model
variables is assumed. The
outputs are as close as
possible to the
corresponding
observations in time and
space through the
continuous adjustment of
the objective function

The introduction of time
variables makes the model
parameters dynamically
adjusted, but the
derivatives of the objective
function are calculated

Elbern et al. [6] and
Yumimoto and Uno [7]

Gradient-based
methods

Directly minimizing the
objective function to obtain
the optimal solution, the
descent direction of the
objective function is
determined by the gradient
of the objective function

The first-order or
second-order derivative of
the objective function is
required, and the result
depends on the initial value

Li and Niu [8]

Direct search
methods

Simulated annealing
algorithm

Setting the initial value of
the parameters and
generating new values of
parameters by random
disturbances, the
corresponding objective
functional values are
compared. The new values
are accepted as the initial
point of the next
simulation with a certain
probability. After iterative
adjustment, the global
optimal solution is
achieved

Without calculating the
derivative of the objective
function, the simulated
annealing algorithm uses
the transfer probability to
avoid local optimum

Thomson et al. [9] and
Newman et al. [10]

Genetic algorithm The initial population of
the parameters is
randomly generated, and
the individuals of the
population are gradually
optimized through a series

opera
ssove

th a ce
babil

Genetic algorithm encodes
with the parameters, it
deals with the population
other than the parameter
itself

Haupt [11], Haupt et al.
[12], Allen et al. [13] and
Haupt et al. [14]
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ersion model in such a way that optimizes the sum of the squared
rrors between the observed concentrations and the calculated
oncentrations via the pattern search method. The results shown
n this work were programmed by MATLAB.

. Modeling and solution via the pattern search method

Many dispersion models have been developed to describe the

ispersion of pollutants. In this research, a Gaussian puff model
as applied to generate the calculated concentrations. The source

nversion problem was modeled by minimizing the objective func-
ion, which was constructed from a sum of squared errors between
he observed concentrations and the calculated concentrations. The
tions of selection,
r, and mutation
rtain degree of

ity

pattern search method was then applied to adjust the objective
function until a given tolerance has been achieved, and the value
for obtaining the minimum of the objective function was regarded
as the optimal solution. The source strength was treated as an
unknown parameter and evaluated through an inversion model,
which is described in Sections 2.1 and 2.2. The strength, location,
and release time were all considered as unknown parameters, as
described in Section 2.3.
2.1. Modeling

The inversion model was constructed by incorporating the
observed concentrations with the dispersion model. In order to



4 ardous Materials 183 (2010) 474–481

d
i
t

C

w
t
t
t
c

l
p
t
o
p
o

m

w
c

m

w
s
p

a
t
w
f
t
c
f

2

w
f
i
r
w
t

d
o
t
s
s

76 X. Zheng, Z. Chen / Journal of Haz

emonstrate the utility of the pattern search method in solving the
nversion model, a Gaussian puff model was employed to simulate
he instantaneous release of toxic gas. The formulation is given as

(x, y, t) = 2Q

(2�)3/2�x�y�z

exp

(
−1

2

(
(x − ut)2

�2
x

+ y2

�2
y

))
(1)

here C(x, y, t) is the concentration in the location of (x, y) at time
, (x, y) is the Cartesian coordinate in the downwind direction from
he source, Q is the strength of the release source, t is the time after
he release, u is the wind speed, and �x, �y, and �z are the dispersion
oefficients in the x, y, z direction respectively.

The above formulation was constructed with the release source
ocated in the origin of the Cartesian coordinate system, and the
ositive direction of the x-axis was the same as the wind direc-
ion. Let Ci

cal
and Ci

obs
be the calculated concentration and the

bserved concentration at the fixed observation point i, the pur-
ose being to minimize the objective function, which is in the form
f

in
Q

f (Q ) =
N∑

i=1

(Ci
obs − Ci

cal)
2

(2)

here N is the total number of the observation points. Since Ci
cal

is
alculated by Eq. (1), the final objective function can be written as

in
Q

f (Q ) =
N∑

i=1

(
Ci

obs −
2Q

(2�)3/2�xi
�yi

�zi

exp

×
(
−1

2

(
(xi − ut)2

�2
xi

+ y2
i

�2
yi

)))2

(3)

here the variables are the same as defined above, with the sub-
cript i showing that the variables are defined in the observation
oint i.

In this formulation, the source strength Q was iteratively
djusted in order to optimize the fitness of the observed concentra-
ions and the calculated concentrations until the optimal solution
as obtained. Therefore, the source inversion problem was trans-

ormed into an optimization problem (see Eq. (3)). As described in
he following sections, the pattern search method was used to back-
alculate the source strength by gradually adjusting the objective
unction (3).

.2. The pattern search method for solving the inversion model

The pattern search method optimizes the objective function
ithout calculating any derivatives. It calculates the objective

unction value directly in the process of optimization, which
ncludes two basic steps: the axis direction move (or axis explo-
ation) and the pattern move. This method is based on a pattern e,
hich in this work is established according to the exploration of

he neighborhood of the current point. Its form is

where n is the number of unknown parameters. A trial step is

efined by ıei, where ı is a constant that determines the length
f the search step, and ei is the ith column in e. The trail point in
he pattern is given by y(k) + ıei, with y(k) being the current best
olution. y(k) + ıei is then examined to see whether it is a better
olution.
Fig. 1. Flowchart of the pattern search method in back-calculating the source
strength.

The source strength Q was treated as an unknown parameter.
The process of the pattern search method in back-calculating the
strength Q is shown in Fig. 1.

Fig. 1 summarizes the process of the pattern search method
in solving the inversion model. Starting from a given point Q0, a
sequence of points that may or may not approach the optimal point
is computed. The axis exploration is started from the current point,
which may be the initial starting point set by the user or rather
calculated from the previous step of this method. By adding or sub-
tracting the current point to a trail step ıe1, the objective function
values in these new points (f(y(k) + ıe1) or f(y(k)− ıe1)) are com-
pared with the value of the current point (f(y(k))) so as to determine
whether an improvement has been achieved. The pattern move is
conducted after the improvement of the current point.

If there is no improvement for the explorations in all directions,
the exploration is conducted with a reduced step size until a given
tolerance (e.g. 1e−10) for the method to terminate has achieved.
The pseudo code of the algorithm is shown in Appendix.

2.2.1. Solving the model via the pattern search method with
different meshes

The feasibility of the pattern search method in back-calculating
the source strength was tested with simulation data. It was carried
out under these assumptions: (i) for the instantaneous release, the
source strength Q = 5×106 g, (ii) When the atmospheric stability
class is F, (iii) the average wind speed is assumed to be 2 m/s. In a
scope of 1 km by 1 km, the concentrations are discreted by Eq. (1)
on five different meshes, including 2×2, 4×4, 8×8, 10×10, and
20×20.

For these five different meshes, the release source was fixed at
the origin of the coordinate and the receptors were fixed in the
grid points. For instance, Fig. 2a shows the 4×4 mesh, where 20

receptors (with symbol ‘o’) are used to detect the pollutants and to
supply the concentration observations.

Table 2 shows the optimization results by the pattern search
method with different meshes. For the 4×4 or much finer meshes,
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Table 2
Comparison of the results with different meshes.

Grids Separation
distance (m)

Qopt (g) Iterations Computational
time (s)

2×2 500 1×106 34 0.121734
4×4 250 5×106 139 0.513487
8×8 125 5×106 139 1.762208
10×10 100 5×106 139 2.744549
ig. 2. (a) The setup for the 4×4 mesh of receptors. (b) The setup for the 2×2 mesh
f receptors.
he identification of the source strength is successful, but it failed
or the case of the 2×2 mesh. Since there are only 6 receptors in
otal to detect the pollutants (see Fig. 2b), and the concentration of
he pollutant decreases with the increasing distance, the threshold
alue of the sensor can not be attained, so the concentrations below

Fig. 3. Search results with diffe
20×20 50 5×106 139 15.807123

the threshold value are not be observed. Therefore, the available
concentrations observed in the 2×2 mesh are limited, which leads
to the failure to identify the proper solution.

The superiority of the algorithm in characterizing the source
strength was demonstrated. However, it still depended on
the observation of the concentrations, i.e. the locations and
the number of receptors. Therefore, this method could only
be used when there were enough receptors to supply the
observations.

2.2.2. Solving the model via the pattern search method with
different acceleration factors

As is shown in Fig. 1, a sequence of points was constructed during
the process of the algorithm, and the new point was calculated by
the equation: y(k+1) = Q(k+1) + ˛(Q(k+1)−Q(k)), where Q(k) is the cur-
rent value, Q(k+1) is the point after the exploration, and ˛ is the
acceleration factor. Therefore, it was found that different accelera-
tion factors affected the calculation efficiency. Fig. 3 shows that the
number of iterations for the method to terminate varies with dif-
ferent acceleration factors. Although it is able to obtain the optimal

solution, it requires different iterations as well as different con-
suming time to terminate. Hence, a carefully selected acceleration
factor improves the efficiency of the method.

rent acceleration factors.
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where C(x, y, z, He) is the concentration at the location (x, y, z), He

is the effective height of the source, Q′ is the release rate, and the
remaining variables are the same as defined in Section 2.1. There-

Table 3
Comparison of the search results with multiple parameters.
Fig. 4. Search results of thesourc

.3. Extension of the inversion model—characterizing the source
ith multiple parameters

The results given above demonstrated the feasibility of the pat-
ern search method in the back-calculation of the source strength.
n this section, the method is extended to study the multiple
arameters, which includes the unknown parameters of the source
trength Q, location (x, y) and the initial release time t. In order
o verify the applicability of the pattern search method in solving
he multiple parameters, the location of the pollutant source was
ssumed to be (x0, y0) and was set as the origin of the new coor-
inate system. For the observation point (x, y) in the downwind
irection, the transformation of the coordinate is

x′ = x − x0
y′ = y− y0

(4)

Thus the concentration in any observation point can be
xpressed as

C(x, y, t)
∣∣

(Q,x0,y0,t0)

= 2Q

(2�)3/2�x�y�z

exp

(
− 1

2

(
((x − x0)− u(t − t0))2

�2
x

+ (y− y0)2

�2
y

))
(5)

Therefore, the objective function is

in f (Q, x0, y0, t0)

=
N∑

i=1

{
Ci

obs −
2Q

(2�)3/2�xi
�yi

�zi

exp

×
(
−1

2

(
((xi − x0)− u(t − t0))2

�2
xi

+ (yi − y0)2

�2
yi

))}2

(6)
Fig. 4 illustrates the search results when Q0 = 5×106 g,
0 = 2.5 m, y0 = 3.5 m, t0 = 3 s.

This shows that the algorithm is capable of searching for the
ptimal solution with multiple parameters (see Table 3). Thus the
ngth, location, and release time.

pattern search method can also be extended to the study of multiple
parameters.

3. Testing with practical data

The demonstrations shown above are based on instantaneous
release; however, not all releases are instantaneous. In this section,
the technique is tested for the continuous release by using practi-
cal data obtained from an experiment conducted in Hebei, China,
before the 2008 Beijing Olympic Games.

3.1. Continuous release

For the continuous release, the Gaussian plume model was
employed. The relevant formulation is

C(x, y, z, He) = Q ′

2�u�y�z
exp

(
− y2

2�2
y

){
exp

(
− (z −He)2

2�2
z

)

+ exp

(
− (z +He)2

2�2
z

)}
(7)
Parameter Exact solution Approximate solution Relative error (%)

Q0 5×106 g 5 209 919.320766 g 4.1984
x0 2.5 m 2.503405 m 0.1362
y0 3.5 m 3.558077 m 1.6593
t0 3 s 3.001690 s 0.0563
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Table 4
Effective observations in the testing points.

Effective points
(z = 1 m)

Concentration
(ppm)

Effective points
(z = 2 m)

Concentration
(ppm)

5 0.32 6 1.52
6 1.34 7 5.75
7 6.46 8 2.38
9 0.76 9 0.46

10 0.17 10 0.23
11 452.08 11 494.79
12 1996.54 12 2004.35
13 1073.62 13 1084.19
14 430.34 14 427.21
17 0.04 16 0.01
18 0.01 17 0.03

to the true value. The results are shown in Fig. 7.
For the testing of an unknown parameter, different initial values

can provide solutions along with different iterations to terminate
the method. In the case of multiple parameters, the method may
Fig. 5. Distribution of the sensors.

ore, the objective function is given as

in
Q ′

f (Q ′) =
N∑

i=1

{
Ci

obs −
Q ′

2�u�y�z
exp

(
− y2

2�2
y

)

×
[

exp

(
− (z −He)2

2�2
z

)
+ exp

(
− (z +He)2

2�2
z

)]}2

(8)

.2. Testing with practical data

In order to guarantee safety during the Beijing 2008 Olympic
ames, particularly in the case of terrorist attacks involving toxic
as, certain experiments were conducted by the Chinese govern-
ent, details are described below.
Fig. 5 shows the distribution of the observation points in the

esting field. Ammonia (NH3) was continuously released at 80 g/s,
ith the release rate being controlled by a valve. The wind was

lowing to the northeast with an average speed of 6 m/s. Taken the
elease source as the original point, the radii of the circles were
00 m, 200 m, 500 m, 1000 m, and 2000 m. There were 19 testing
oints to detect the concentrations with sensors (such as CYBER
ensors provided by Nano Environmental Technology (N.E.T. srl)
f Italy, and the AreaRAE detector provided by RAE Systems of the
.S.), and each point detected the concentrations at two different
eights of 1 m and 2 m above ground level.

The concentrations were observed ten minutes after the release,
nd the observations are shown in Table 4. Being that the experi-
ent was conducted in the open field, the actual observations were

omewhat decreased.
Following this, the pattern search method was applied to the
est. According to the concentrations observed, the output of the
ethod is 79.9485 g/s (shown in Fig. 6), which is almost equal to

he experimental value. Therefore, the pattern search method can
fficiently inverse the source even in practical cases.
Fig. 6. Search results of the release rate.

4. Analysis and comparison

4.1. Analysis of the method

As a direct optimization method, the pattern search method
depends on initial values. Compared with cases where initial val-
ues differ greatly from the true value, it appears to take less time
to determine the optimal solution when the initial value is closer
Fig. 7. Search results with different initial values.
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Table 5
Comparison of different methods.

Pattern search method Gradient-based methods Intelligent optimization
algorithms (e.g. GA)

Initial value dependence (Y or N) Y (users set) Y (users set) N (randomly generated)
Calculation of the derivatives of the

objection function
N Y N

Amount of calculations Small Large Quite large
Iterations Depends on initial value Small The more iterations, the better
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Computational complexity Simple

pproach a local optimal solution if the initial value is incorrectly
hosen.

Furthermore, it is important to establish a termination criterion
or the method. There may be some criteria for the pattern search

ethod to terminate. These criteria are as follows:

The step size is less than a given tolerance.
The distance between the grid points, which are obtained in two
consecutive successful iterations, is less than a given tolerance.
The difference between the objective function values of the grid
points, which are obtained in two consecutive successful itera-
tions, is less than a given tolerance.
The maximum number of the calculations of objective functions
reaches a given value.
The maximum number of the iterations reaches a given value.

Once one of the criteria is satisfied, the optimization process
erminates with obtaining an optimal solution. The first criterion
step size) is generally used for this research. With the decrease of
he termination step size, the accuracy of the solution is improved
orrespondingly; the computational time, however, is longer.

.2. Comparison with other methods

In order to show the advantages and disadvantages of the pat-
ern search method, it is compared with other methods, including
he gradient-based methods and intelligent optimization algo-
ithms. The differences are shown in Table 5.

From Table 5 one can see that the utilization of the pattern
earch method is comparatively effective given that no deriva-
ive information is required and only direct function evaluations
re needed. In contrast, the gradient-based method requires the
alculations of derivatives of the objective functions, which is dif-
cult to program, particularly in the case of multiple parameters
see Section 2.3); therefore, the application of the gradient-based

ethod is limited. Concerning Genetic algorithm (GA), its advan-
age is global optimization; however, it requires a large number of
unction evaluations per iteration, which result in the expenditure
f much computational time.

In future research, it is suggested that a hybrid of GA and the
attern search method be used for the source inversion, thus the
ombination of the global optimization of the GA and the local
earch capability of the pattern search method will be more effi-
ient to obtain the optimal solution.

. Conclusions

In order to determine the strength and location of the release

ource, an inversion model is constructed based on the concentra-
ions observed in the downwind direction of the release source and
dispersion model. The advantages of the pattern search method in
olving this inversion model have been demonstrated. The calcula-
ion efficiency can be improved by adjusting the acceleration factor.
accuracy
Complex Complex

Since the calculations of objective functions are only involved with
the pattern search method, the approach is easily extended to
the study with multiple parameters. The pattern search method
is easier to implement than the gradient-based methods when
the computational complexity is concerned, and it requires fewer
functional evaluations than Genetic algorithm to obtain the opti-
mal solution. Accordingly, the pattern search method can provide
timely and accurately the vital information needed for emergency
response and rescue.

Acknowledgements

This paper was supported by the National Basic Research Pro-
gram of China (Grant no. 2011CB706900), the National Natural
Science Foundation of China (Grant no. 70502006), the Program
for a New Century of Excellent University Talents, Ministry of Edu-
cation of the People’s Republic of China (Grant no. NCET-07-0056),
and the Doctoral Subject Foundation of the Ministry of Education of
China (Grant no. 20070010014). The authors would like to thank the
editor, Andrew J. Daugulis, and anonymous reviewers for various
suggestions, their comments helped to improve this paper.

Appendix A. Pseudo code of the algorithm

Let y be an array to store the points obtained by the algorithm,
f(·) is the objective function.
INITIALIZATION: y(1) = Q(1) = Q0, k = 1
IF Step size ı≥given tolerance THEN

DO: Axis exploration
IF f(y(k) + ıe) < f(y(k)) THEN y(k + 1) = y(k) + ıe
ELSE IF f(y(k)− ıe) < f(y(k)) THEN y(k + 1) = y(k)− ıe

ELSE y(k + 1) = y(k)
END IF

END IF
IF f(y(k + 1))≥ f(Q(k)) THEN

DO: Pattern move
k = k + 1
ı = ı/2
y(k) = Q(k-1)
Q(k) = Q(k-1)

ELSE
k = k + 1
Q(k) = y(k)
y(k) = Q(k) + ˛(Q(k)−Q(k−1))

END IF
ELSE

Terminate, optimal solution←Q(k)
END IF
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